Crassulacean acid metabolism: plastic, fantastic.

نویسندگان

  • Antony N Dodd
  • Anne M Borland
  • Richard P Haslam
  • Howard Griffiths
  • Kate Maxwell
چکیده

The occurrence, activity and plasticity of the CAM pathway is described from an introductory viewpoint, framed by the use of the four "Phases" of CAM as comparative indicators of the interplay between environmental constraints and internal molecular and biochemical regulation. Having described a number of "rules" which seem to govern the CAM cycle and apply uniformly to most species, a number of key regulatory points can then be identified. These include temporal separation of carboxylases, based on the circadian expression of key genes and their control by metabolites. The role of a circadian oscillator and interplay between tonoplast and nuclear control are central to maintaining the CAM cycle. Control of reserve carbohydrates is often neglected, but the importance of daily partitioning (for growth and the subsequent night-time CAM activity) and use at night is shown to drive the CAM cycle. Finally, it is shown that the genotypic and phenotypic plasticity in patterns of CAM expression is mediated partly by environmental conditions and molecular signalling, but also by diffusive constraints in succulent tissues. A transformation system is now required to allow these key areas of control to be elucidated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variation in the carbon isotope composition of a plant with crassulacean Acid metabolism.

The content of (13)C varies in plants with Crassulacean acid metabolism. Differences up to 3.5 per thousand in the (13)C/(12)C ratios were observed between leaves of different age in the same plant of Bryophyllum daigremontianum. Soluble and insoluble carbon in the same leaf differed up to 8 per thousand, the largest difference occurring in the leaves with the highest Crassulacean acid metaboli...

متن کامل

Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments

BACKGROUND AND AIMS Single stressors such as scarcity of water and extreme temperatures dominate the struggle for life in severely dry desert ecosystems or cold polar regions and at high elevations. In contrast, stress in the tropics typically arises from a dynamic network of interacting stressors, such as availability of water, CO(2), light and nutrients, temperature and salinity. This require...

متن کامل

Hydrogen, oxygen, and carbon isotope ratios of cellulose from submerged aquatic crassulacean Acid metabolism and non-crassulacean Acid metabolism plants.

Isotope ratios of cellulose and cellulose nitrate from aquatic Crassulacean acid metabolism (CAM) and non-CAM plants were determined. Cellulose oxygen istope ratios for all plants that grew together were virtually identical, whereas large differences were observed for hydrogen isotope ratios of cellulose nitrate between CAM and non-CAM plants. Carbon isotope ratios of cellulose nitrate did not ...

متن کامل

Intracellular Localization of Some Key Enzymes of Crassulacean Acid Metabolism in Sedum praealtum.

The intracellular locations of six key enzymes of Crassulacean acid metabolism were determined using enzymically isolated mesophyll protoplasts of Sedum praealtum D.C. Data from isopycnic sucrose density gradient centrifugation established the chloroplastic location of pyruvate Pi dikinase, the mitochondrial location of NAD-linked malic enzyme, and exclusively nonparticulate (not associated wit...

متن کامل

Effects of osmotic gradients on vacuolar malic Acid storage: a basic principle in oscillatory behavior of crassulacean Acid metabolism.

Malate synthesis by CO(2) dark fixation and malate accumulation in the vacuoles of leaf slices of Kalanchoë daigremontiana Hamet et Perrier, a plant performing crassulacean acid metabolism, occurs only in external solutions where the osmotic pressure difference between the cells and the medium is low. Conversely, malate loss from the vacuoles depends on a high osmotic pressure difference betwee...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 53 369  شماره 

صفحات  -

تاریخ انتشار 2002